SRB CRITICAL ITEMS LIST

SUBSYSTEM: SEPARATION

ITEM NAME: FWD Booster Separation Motor (BSM)

PART NO.: 10317-0001-805, -806 FM CODE: A04

ITEM CODE: 30-01-06 REVISION: Basic

CRITICALITY CATEGORY: 1 REACTION TIME: Immediate

NO. REQUIRED: 4 per SRB DATE: March 1, 2002

CRITICAL PHASES: Separation SUPERCEDES: March 1, 1995

FMEA PAGE NO.: B-23 ANALYST: T. Burke/S. Parvathaneni

SHEET 1 OF 8 APPROVED: S. Parvathaneni
CN 044

FAILURE MODE AND CAUSES: Debris ejection caused by:

o Aft insulator

- Mechanical material properties
- Processing
- Debond
- o Contamination/foreign material
- o Propellant break up
- o Mechanical/material properties
 - Closure failure
 - Exit cone failure
 - Igniter case failure
 - Throat insert failure
 - Thread Failure
- o Improper installation of the aeroheating shield (also see FMEA 30-01-08)
- Crack or other material defects
 - Case
 - Closure
 - Exit cone
 - Igniter adapter
 - Throat insert
- o Improper nozzle assembly
- o Dimension Non-conformances
 - Case
 - Closure
 - Exit Cone
 - Throat Insert
 - O-rings

FAILURE EFFECT SUMMARY: Debris generation results in loss of mission, vehicle and crew.

RATIONALE FOR RETENTION:

A. DESIGN

Design Specification is USA SRBE 10SPC-0067.

- o Propellent UTP 19048 per specification SE022. (Propellant)
 - Formulation is ammonium perchlorate, hydroxyl/terminated polybutadiene, isophorone diisocyanate, dioctyl adipate, aluminum, ferric oxide, PRO-TECH, and HX-752 bonding agent. Each constituent is procured and accepted to CSD specification.
- o Propellant processing of propellant and loaded motor case per SEO727. (Propellant)
 - Constituent requirements and controls for each premix and final mix defined.
 - Temperature and time limits defined.
- o Mechanical/Material Properties
 - Case and closure 7075-T73 aluminum per 10SPC-0084 and 10SPC-0085 respectively.
 - Igniter parts are stainless steel 303, 304 or 304L condition A per QQ-S-763 or QQ-S-764.
 - The nozzle assembly consists of an aluminum closure, a carbon steel exit cone finished with a nondebris forming ceramic (Sermetel), on the external surfaces, a heat resisting ablative, butadiene acrylonitrile rubber insulator and a graphite throat. The throat and the insulator are bonded to the closure and are held in position at separation by the motor internal pressure.
- o Foreign Material (Contamination/Foreign Material)
 - Security bag with lead seal installed over exitcone following final assembly inspection.
- o Aeroheat Shield Installation The aeroheat shield is shipped separately from the BSM and is installed at KSC in accordance with drawing 10125-0008 (Forward BSM Installation, Frustum SRB).
- o Qualification of design documented in CSD 5180-79-109 (All Failure Causes)
 - Motor performance verified by 14 motor tests.
 - BSM exhaust particle size and distribution determined from exhaust samples from 5 test motors.
- Delta Qualification Tests
 - CSD 5596-88-3 delta qualification test for booster separation motor configurations 10317-0001-803 and 10317-0002-803. Delta qualification on two units subjected to thermal cycling, vibration tests, and motor static test.
 - CSD 5597-93-2 delta qualification tests for BSM configuration 10317-0001-805. Delta qualification on two units subjected to environmental and functional tests.
- o Case and closure forging qualification tests performed on all first production heat treat lots from new supplier or for a process change per 10SPC-0084 or 10SPC-0085. (Mechanical/Material Properties)

- 14/12 point electrical conductivity test for each forging.
- Chemical analysis on each lot
- Grain flow determination on one forging
- Cross sectional hardness tests on one forging
- Tensile tests and fracture toughness tests on two forgings

B. TESTING

- o All listed vendor related tests are witnessed or monitored by vendor (or sub-tier vendor) QA personnel. When no designated QA organization exists at a vendor, tests are witnessed/monitored by CSD QA personnel or test records are evaluated for compliance with specification requirements by CSD QA personnel.
- o All listed KSC related tests are witnessed or monitored by USA SRBE or SPC QA personnel.
- o Propellant batch acceptance test. (Propellant)
 - Examination of material certification
 - Examination of process weight records
 - Physical properties determination
 - Examination of workmanship
 - Final propellant mixture to meet following requirements:
 - -- Burn rate verified by liquid strand burn rate tests.
 - -- Properties:

Percent IPDI at 60 minutes after addition

Viscosity @ 140 degrees F and 60 minutes after addition (kpoise @ 5000 dynes/cm)

True strain @ max corrected stress

Maximum corrected stress

o Processing of propellant and loaded motor case. (Propellant)

Propellant Formulation and Mixing Verifications

- The HX-752 concentration in premix A
- Premix A water content
- Premix C parameters:

Percent iron oxide

Percent aluminum plus iron oxide

Percent ammonium perchlorate

- o Propellant ballistic properties are verified by static test of flight configuration motor. (Propellant)
 - Thrust/Pressure vs time data analyzed for conformance to performance requirements.

30-36 Supercedes: March 1, 1995

DRD 1.4.2.1-b

- o Mechanical/Material Properties
 - Each case/closure hydrotested as a serialized unit.
 - Each igniter case hydrotested.
 - Each case/closure heat treat lot.
 - o Chemical analysis on each lot
 - o Surface hardness test on each forging
 - o 6/8 point electrical conductivity test on each forging
 - Tensile and fracture toughness test on two forgings
 - Leak Test
 - o For each motor the case to closure and igniter to case sealing surface O-rings are seated and the joints are tested under low pressure with no leakage allowed.

C. INSPECTIONS:

- o All listed vendor related inspections are conducted 100% by vendor (or sub-tier vendor) QA personnel. Where no designated QA organization exists at a vendor, inspections are witnessed/monitored by CSD QA personnel or inspection records are evaluated for compliance with quality system requirements by CSD QA personnel.
- o All listed KSC related inspections are conducted 100% by USA SRBE or SPC QA personnel.

VENDOR RELATED INSPECTIONS

Propellant Constituents Inspections

Hydroxyl Terminated Poly-Butadiene

- Chemical/physical properties of the following constituents are verified by test and data evaluation.

Hydroxyl value

Water

Iron

Peroxide

Antioxidant

Viscosity @300 C

Insolubles

- Infrared spectra analysis performed to identify material

Isophorone Diisocyanate

- Chemical/physical properties of the following constituents are verified by test and data evaluation.

NCO equivalent weight

Dimer

Density @200 C

Hydrolyzable chloride

Water

- Infrared spectra analysis performed to identify material

Di-octyl Adipate

- Chemical/physical properties of the following constituents are verified by test and data evaluation.

Ester content

Specific gravity at 25°

Acidity, as acetic acid

Stabilizer

- Melting point is verified by test and data evaluation.

Bonding Agent

- Chemical/physical properties of the following constituents are verified by test and data evaluation.

Imine equivalent weight

Hydrolyzable chloride

Moisture

- Infrared spectra analysis performed to identify material

Aluminum

- Chemical/physical properties of the following constituents are verified by test and data evaluation.

Free aluminum metal

Volatiles

Ether Extractables

Particle size distribution

Ferric Oxide

- Chemical/physical properties of the following constituents are verified by test and data evaluation.

Ferric oxide, assay

Loss on ignition

Water content

pH, water suspension

Particle size distribution

Ammonium Perchlorate (Standard)

- Chemical/physical properties of the following constituents are verified by test and data evaluation.

Ammonium perchlorate assay

Tricalcium Phosphate

Total water

pH of water solution

Sulfated ash

Particle size

Ammonium Perchlorate (90 micron)

- Chemical/physical properties of the following constituents are verified by test and data evaluation.

Ammonium perchlorate assay

Tricalcium Phosphate

Total water

pH of water solution

Sulfated ash

Particle size

o <u>Contamination/Foreign Material</u>:

- A one hundred percent Inspection is performed on interior of motor just prior to installing of the nozzle assembly and taping weather seal on nozzle.
- Installation of security bag and lead seal verified.

o Mechanical/Material Properties

- Case & Aft Closure

- o Material certifications and material test data for case and aft closure are verified.
- o Penetrant Inspection on Case and Aft Closure, following Hydro-test.

Exit Cone

- o Physical and chemical material properties are verified.
- o Magnetic Particle Inspection is verified.

Nozzle Assembly

o Proper mixing of adhesive ingredients is verified.

CN 04/

- Nondestructive evaluation of each insulator to aft closure bond by ultrasound and tap test is made to verify acceptance criteria for voids and debonds.
- o Insulator edge visually inspected for debonds from Aft Closure

Throat Insert:

- o Certification of material, grain direction and x-ray inspection for cracking.
- o All throat inserts are subjected to an alcohol wipe inspection for external cracks.

<u>Igniter Assembly</u>:

- o Material Certifications on the Igniter Adapter and Igniter Case are verified.
- o Penetrant Inspection on Igniter Case and Igniter Adapter following hydrotest.
- o Internal Components The proper position and the presence of the following internal components are verified by examination of X-rays: BKNO3, retainer plate, propellant grain and centering insert.

- o Dimensional Non-conformances
 - Throat Insert
 - o Throat I.D. is dimensionally inspected.
 - Case (The following are dimensionally and/or visually inspected)
 - o Wall thickness and out of round
 - o Dome thickness
 - o Primary o-ring mating surface
 - o Secondary o-ring mating surface
 - Closure (The following are dimensionally inspected)
 - o Primary o-ring gland diameter
 - o Secondary o-ring gland diameter
 - o Primary o-ring gland width
 - o Secondary o-ring gland width
 - O-rings
 - o I.D. and width of closure to case o-rings are dimensionally inspected
 - Exit Cone
 - o Threads at closure end are dimensionally inspected.

KSC RELATED INSPECTIONS

- o Receiving inspection. (Contamination/Foreign Material)
 - Inspection of each BSM received for evidence of damage, or corrosion per OMRSD File V, Vol. I, requirement number BOOOFL.005.
 - Visual inspections of the BSM grain for damage, sags or cracks per OMRSD File V, Vol. I, requirement number BOOOFL.009.
- o Installation Inspections per 10REQ-0021.
 - Inspection of forward BSM interior prior to aeroheat shield cover installation for damage, contamination, and exposed propellant surface cracks or voids is performed per para. 1.1.2.3. (Propellant, Contamination/Foreign Material)
 - Proper installation of the aeroheat shield is verified per para. 1.1.3. (Improper installation of Aeroheating Shield)
 - Aeroheat shield seal integrity is tested by verifying no visual leakage for forward BSM aeroheat shields per para. 1.1.3. (Improper installation of Aeroheating Shield)

- Installation of aeroheat shield attach screws lockwire is verified per para. 1.1.3 (Improper installation of Aeroheating Shield)

D. FAILURE HISTORY:

Failure Histories may be obtained from the PRACA database.

- E. OPERATIONAL USE
- o Not applicable to this failure mode.